Communications to the editor

THE STRUCTURE OF SIOMYCIN-D₁, PEPTIDE ANTIBIOTIC ISOLATED FROM *STREPTOMYCES SIOYAENSIS*

Sir:

Sulfur-containing peptide antibiotic siomycin (SIM) isolated from Streptomyces sioyaensis1) belongs to the thiostrepton group of antibiotics and was shown to consist of one major component (SIM-A) and two minor components (SIM-B and -C)²⁾. The structures of the thiostrepton group antibiotics are too complex to be elucidated by chemical degradation methods. While much of the structure of thiostrepton (TST) has been proposed by X-ray crystallographic analysis⁸⁾, no crystal of SIM-A was suitable for X-ray analysis. The chemical structure of SIM-A (I) was elucidated by ¹³C NMR spectroscopic comparison with TST on the basis of X-ray analysis of TST; the ¹³C NMR study also determined the total structure of TST⁴⁾. The chemical structures of I and TST were finally confirmed by a 270-MHz ¹H FT NMR spectral study including nuclear OVERHAUSER effect difference FT NMR spectroscopy⁵⁾. The structures of SIM-B and -C were also revealed⁶⁾. Further search for other minor components led us to the isolation of several components including SIM-D₁. We report here the isolation of SIM-D₁ (II) and its structure elucidation by ¹H and ¹³C NMR spectroscopy.

Siomycin complex was separated by column chromatography on silica gel using a mixture of CHCl₃ and CH₃OH as an eluting solvent. After

SIM-C, -B, and -A were eluted, fractions containing SIM-D₁ were obtained. SIM-D₁ was purified by repeated column chromatography or preparative thin-layer chromatography and recrystallized from a mixture of CHCl₃ and CH₈OH: mp *ca.* 260°C (decomp.); $[\alpha]_{\rm D}$ –69.9° (dioxane); Rf 0.13 (silica gel, CHCl₃ - CH₈OH, 95:5); UV (EtOH) a plain curve ascending to 205 nm with shoulders at 250 and 285 nm; IR $\nu_{\rm max}^{\rm KBr}$ 1730, 1680 cm⁻¹ (Fig. 1); amino acid analysis, Ammonia, 6.76; Thr, 0.84; Ala, 1.00; Val, 1.01. These physicochemical properties are similar to those of SIM-A. SIM-D₁ exhibited *in vitro* antibacterial activity comparable to SIM-A against Gram-positive bacteria.

In the 270-MHz ¹H NMR spectrum of II in CDCl₃ (Fig. 2), the doublet due to the Q-12 CH₃ and the quartet due to the Q-11 CH, which were respectively seen at $\delta_{\rm H}$ 1.37 and 5.34 in that of I, were not observed, and an ABX pattern assignable to a CH₂OH grouping was observed around $\delta_{\rm H}$ 4.5 and 5.0. On addition of D₂O, the signal at $\delta_{\rm H}$ 5.0 disappeared, and the ABX-type signal was changed into an AX-type signal at $\delta_{\rm H}$ 4.43 and 4.99. Furthermore, all signals due to protons proximate to the CH(OH)CH₃ grouping of the Q residue of I were shifted to lower or higher fields in II (see Table 1).

The ¹³C signal assignments at 15-MHz reported in our preceding paper⁴⁾ were very tentative. Further investigations of 25 and 50-MHz ¹³C NMR spectra of I and SIM derivatives made it possible to assign almost all signals. Since almost all ¹H signals of I were assigned at

Fig. 1. Infrared spectra of siomycin-A (I) and siomycin-D₁ (II).

Fig. 2. 270-MHz ¹H FT NMR spectra of siomycin-A (I) (lower trace) and siomycin-D₁ (II) (upper trace) in $CDCl_3$.

FT measurement conditions: spectral width, 3600 Hz; pulse width, 12 μ s (90°); acquisition time, 2.26 s; number of data points, 16 K; number of transients, 256; 5-mm spinning tube; concentration, 40 mg/ml; 23°C.

FT measurement conditions: spectral width, 5500 Hz; pulse width, 18 μ s (43°); acquisition time, 0.7 s; number of data points, 8 K; number of transients, 200 K; 5-mm spinning tube; concentration 120 mg/ml; 70°C.

1564

Assignment	δ_{H}	Assignment	$\delta_{ m H}$	Assignment	${\delta}_{ m H}$
Ala-1 β CH ₃ α CH NHCO Deala-1 β =CH(c) β =CH(t) NHCO Deala-2 β =CH(c) β =CH(t) NHCO Val 7CH ₃ β CH α CH α CH β =CH δ =CH	$ \begin{array}{c} 1.49d \\ 4.79dq \\ 6.50bd \\ 5.21bs \\ 5.71d \\ (-0.05) \\ 8.61bs \\ 5.13bs \\ (-0.05) \\ 6.39bs \\ 9.22bs \\ 0.89d \\ 1.03d \\ 2.12m \\ 2.95d \\ 7.02s \\ (-0.29) \\ 7.08d \\ (+0.14) \\ 6.35dd \\ 3.60d \\ 4.59d \\ 4.43dd \\ (-0.91) \end{array} $	$\begin{array}{c} Q & 11CH(B) \\ & 12CH_3 \\ & 80H \\ Thr-2 & 7-CH_3 \\ & \beta CH \\ & \alpha CH \\ & NHCO \\ Thsin & \delta CH_3 \\ & 7CH \\ & 7CH_3 \\ & \alpha CH \\ & NHCO \\ & Thz-4=CH \\ Cys & \beta CH \\ & \beta CH \\ & \alpha CH \\ Debut & 7CH_3 \\ & \beta = CH \\ & NHCO \\ \end{array}$	$\begin{array}{c} 4.99dd \ (-0.35) \\ \underline{}_{b}^{b} \\ 6.85d \\ 1.67d \\ 6.42d \\ 5.84d \\ 8.20bd \\ 1.36d \\ 3.81bs \\ 1.19s \\ 5.76d \\ 7.55bd \\ 8.29s \\ 3.12dd \\ 3.71dd \\ 4.97dd \\ 1.64d \\ 6.20q \\ 8.52s \end{array}$	Thr-1 7CH ₃ β CH α CH NHCO Thst A° P-3aCH P-3eCH P-4eCH P-4eCH P-6aCH NHCO Thz-1=CH Thz-2=CH Thz-3=CH Deala-S-1 β =CH(c) β =CH(t) NHCO Deala-S-2 β =CH(c) β =CH(t) NHCO	$\begin{array}{c} 0.97d\\ 1.22m\\ 4.51dd\\ 6.86dd\\ 2.96dddd\\ 3.50dddd\\ 2.27ddd\\ 4.09ddd\\ 5.17bs\\ 9.84bs\\ 8.28s\\ 8.14s \ (+0.06)\\ 7.48s \ (+0.05)\\ 5.58bs\\ 6.81d\\ 9.97bs\\ 5.47bs\\ 6.70d\\ 9.00bs\\ \end{array}$
Assignment	$\delta_{ m C}$	Assignment	$\delta_{\rm C}$	Assignment	$\delta_{\mathbf{C}}$
Ala βCH_3 αNCH CO Deala-1 $\beta = CH_2$ $\alpha = C$ CO Deala-2 $\beta = CH_2$ $\alpha = C$ CO Val $7CH_3$ βCH αNCH CO Q 12CH_3 7NCH 110CH 80CH 3=CH 5=CH 10=C 6=CH 2=C 4=C 9=C COO	$\begin{array}{c} 19.6^{d} \\ 52.7 \\ 163.7 \\ 103.0 \\ 132.9 \\ 162.5 \\ 100.6 \\ 134.9^{o} \\ 161.6 \\ 16.9 \\ 19.2^{d} \\ 31.8 \\ 68.7 \\ 173.7 \\ __^{b} \\ 60.4 \\ 61.7 \\ (-3.4) \\ 67.9 \\ 125.1 \\ (+1.8) \\ 124.8 \\ 129.7 \\ (+1.4) \\ 130.4 \\ 144.2^{c} \\ 148.7 \\ (-5.7) \\ 155.4^{c} \\ 170.7^{g} \end{array}$	Thr-2 $7CH_{a}$ αNCH βOCH Thstn ∂CH_{a} γCH_{a} αNCH γOCH βOC Thz-4 SCH= NC= CO SC=N Cys βSCH αNCH CO Debut $7CH_{a}$ $\alpha = C$ $\beta = CH$ SC=N Thr-1 $7CH_{a}$ αNCH βOCH CO	$ \begin{array}{c} 19.6^{d} \\ 56.2 \\ 72.7 \\ 16.6 \\ 19.2 \\ 53.8 \\ 69.0 \\ 77.9 \\ 126.0^{h} \\ 150.8 \\ 162.5 \\ 167.4 \\ 35.4 \\ 79.7 \\ 172.4 \\ 15.7 \\ 129.4 \\ 133.1 \\ 170.9^{g} \\ 19.4^{d} \\ 56.6 \\ 67.3 \\ 166.2 \\ \end{array} $	Thst A P-3 CH_2 P-4 CH_2 P-5 NC P-6 CH P-2 $C=N$ Thz-1 $SCH=$ NC= CO SC=N Thz-2 $SCH=$ NC= CO SC=N Thz-3 $SCH=$ NC= SC=N Deala-S-1 $\beta=CH_2$ $\alpha=C$ CO Deala-S-2 $\beta=CH_2$ $\alpha=C$ CO	$\begin{array}{c} 25.5\\ 30.3\\ 58.5\\ 65.0\\ 162.9\\ 125.4^{11}\\ 157.8^{1}\\ 162.5\\ 169.0\\ 128.1\\ 147.7^{1}\\ 161.7^{1}\\ 170.8\\ 119.4\\ 150.8^{1}\\ 174.0\\ 104.0\\ 135.1^{10}\\ 160.2\\ 104.7\\ 134.0\\ 166.7 \end{array}$

Table 1. Chemical shift data for siomycin- D_1 (II)^a.

* Differences in chemical shifts from those of I were designated in parentheses $(\hat{\sigma}_{II} - \hat{\sigma}_{I})$ when they were over ± 0.05 ppm $(\hat{\sigma}_{II})$ or ± 0.5 ppm $(\hat{\sigma}_{C})$. ^b See text. ^c Abbreviations a and e are axial and equatorial, respectively. ^{d~1} Assignments may be interchanged. Fig. 4. Chemical structure of siomycin-A (I) and siomycin-D₁ (II): I, $R = CH_3$; II, R = H.

Deala, dehydroalanine; Debut, dehydrobutyrine; P, piperidine ring; Q, quinaldic acid precursor; Thstn, thiostreptine residue; Thst A, thiostreptonic acid unit; Thz, thiazole ring.

270 MHz in CDCl₃ - CD₃OD (4:1)⁵⁾, ¹H singlefrequency off-resonance decoupling ¹³C spectra in CDCl₃ - CD₃OD (4:1) at 70°C gave ¹³C signal assignments for all protonated carbon signals except those for some overlapping Me signals. Most of the nonprotonated carbon signals were assigned by chemical-shift comparisons between the derivatives. The deuterium isotope substitution effects7) upon these 13C signals from $CDCl_{3} - CD_{3}OH(4:1)$ to $CDCl_{3} - CD_{3}OD(4:1)$ also provided useful information about the signal assignments⁶⁾. The ¹³C spectrum of II in CDCl₃- CD_3OH (4:1) (Fig. 3) exhibited a signal at δ_c 61.7 due to the Q-11 CH₂ instead of signals at $\delta_{\rm c}$ 65.1 due to the Q-11 CH and 23.2 due to the Q-12 CH₃ in I. ¹³C Signals due to Q-3 CH and Q-10 $-\overset{1}{C}$ - were shifted to lower fields and the signal of Q-4 -C- was shifted to a higher field compared with those of I. These shift data are consistent with the effects of methyl substitution at Q-11 CH₂ of II. The ¹³C NMR data for I and II are listed in Table 1. On the basis of these observations, the structure II was assessed

for $SIM-D_1$. The structures of other minor components are under investigation.

Katsuya Tokura* Kazuo Tori Yohko Yoshimura Kei Okabe Hideo Otsuka

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

KAZUHIRO MATSUSHITA

Application Center, Scientific Instrument Project, JEOL Ltd., Nakagami, Akishima, Tokyo, 196 Japan

Fuyuhiko Inagaki Tatsuo Miyazawa

Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113 Japan

(Received September 19, 1980)

References

- NISHIMURA, H.; S. OKAMOTO, M. MAYAMA, H. OTSUKA, K. NAKAJIMA, K. TAWARA, M. SHIMO-HIRA & N. SHIMAOKA: Siomycin, a new thiostrepton-like antibiotic. J. Antibiotics, Ser. A 14: 255~263, 1961
- EBATA, M.; K. MIYAZAKI & H. OTSUKA: Studies on siomycin. I. Physicochemical properties of siomycins A, B, and C. J. Antibiotics 22: 364~368, 1969
- ANDERSON, B.; D. C. HODGKIN & M. A. VISWAMITRA: The structure of thiostrepton. Nature 225: 233~235, 1970
- 4) TORI, K.; K. TOKURA, K. OKABE, M. EBATA, H. OTSUKA & G. LUKACS: Carbon-13 NMR studies of peptide antibiotics, thiostrepton and siomycin A: the structure relationship. Tetrahed. Lett. 1976: 185~188, 1976
- 5) TORI, K.; K. TOKURA, Y. YOSHIMURA, K. OKABE, H. OTSUKA, F. INAGAKI & T. MIYA-ZAWA: ¹H NMR spectral evidence for the structure and conformation of peptide antibiotic siomycin-A. J. Antibiotics 32: 1072~ 1077, 1979
- 6) TORI, K.; K. TOKURA, Y. YOSHIMURA, Y. TERUI,

1566

K. OKABE, H. OTSUKA, K. MATSUSHITA, F. INAGAKI & T. MIYAZAWA: Structures of siomycin-B and -C and thiostrepton-B determined by NMR spectroscopy and carbon-13 signal assignments of siomycins, thiostreptons, and thiopeptin Ba. In preparation

7) a) Feeney, J.; P. Partington & G. C. K. Ro-

BERTS: The assignment of carbon-13 resonances from carbonyl groups in peptides. J. Magn. Resonance $13: 268 \sim 274$, 1974

b) NEWMARK, R. A. & J. R. HILL: Assignment of primary and secondary amide carbonyl resonances in carbon-13 NMR. J. Magn. Resonance $21: 1 \sim 7, 1976$