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Communications to the editor

  THE STRUCTURE OF SIOMYCIN-D,, 
   PEPTIDE ANTIBIOTIC ISOLATED 

  FROM STREPTOMYCES SIOYAENSIS 

Sir: 
  Sulfur-containing peptide antibiotic siomycin 

(SIM) isolated from Streptomyces sioyaensis1) 
belongs to the thiostrepton group of antibiotics 
and was shown to consist of one major com-
ponent (SIM-A) and two minor components 
(SIM-B and -C)2). The structures of the thios-
trepton group antibiotics are too complex to be 
elucidated by chemical degradation methods. 
While much of the structure of thiostrepton 

(TST) has been proposed by X-ray crystallogra-
phic analysis), no crystal of SIM-A was suitable 
for X-ray analysis. The chemical structure of 
SIM-A (I) was elucidated by 13C NMR spec-
troscopic comparison with TST on the basis of 
X-ray analysis of TST; the 13C NMR study also 
determined the total structure of TST4). The 
chemical structures of I and TST were finally 
confirmed by a 270-MHz 1H FT NMR spectral 
study including nuclear OVERHAUSER effect dif-
ference FT NMR spectroscopy5). The struc-
tures of SIM-B and -C were also revealed6). 
Further search for other minor components led 
us to the isolation of several components in-
cluding SIM-D,. We report here the isolation 
of SIM-D, (II) and its structure elucidation by 
1H and 13C NMR spectroscopy. 

 Siomycin complex was separated by column 
chromatography on silica gel using a mixture of 
CHCl, and CH3OH as an eluting solvent. After

SIM-C, -B, and -A were eluted, fractions con-
taining SIM-D, were obtained. SIM-D, was 

purified by repeated column chromatography or 

preparative thin-layer chromatography and re-
crystallized from a mixture of CHCl3 and 
CH3OH: mp ca. 260°C (decomp.); [a]D-69.9° 

(dioxane); Rf 0.13 (silica gel, CHCl3 - CH3OH, 
95:5); UV (EtOH) a plain curve ascending to 
205 nm with shoulders at 250 and 285 nm; IR 

KBRmax1730, 1680 cm-1 (Fig. 1); amino acid ana-
lysis, Ammonia, 6.76; Thr, 0.84; Ala, 1.00; Val, 
1.01. These physicochemical properties are 

similar to those of SIM-A. SIM-D, exhibited 
in vitro antibacterial activity comparable to 
SIM-A against Gram-positive bacteria. 

 In the 270-MHz 1H NMR spectrum of II in 
CDCl3 (Fig. 2), the doublet due to the Q-12 

CH3 and the quartet due to the Q-11 CH, which 
were respectively seen at dH 1.37 and 5.34 in that 

of I, were not observed, and an ABX pattern as-
signable to a CH2OH grouping was observed 

around u„ 4.5 and 5.0. On addition of D2O, 
the signal at o„ 5.0 disappeared, and the ABX-

type signal was changed into an AX-type signal 
at a„ 4.43 and 4.99. Furthermore, all signals 
due to protons proximate to the CH(OH)CH3 

grouping of the Q residue of I were shifted to 
lower or higher fields in II (see Table 1). 

 The 13C signal assignments at 15-MHz re-

ported in our preceding paper4) were very 
tentative. Further investigations of 25 and 50-
MHz 13C NMR spectra of I and SIM deriva-

tives made it possible to assign almost all signals. 
Since almost all 1H signals of I were assigned at

Fig. 1. Infrared spectra of siomycin-A (1) and siomycin-D, (II).
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Fig. 2. 270-MHz 1H FT NMR spectra of siomycin-A (1) (lower trace) and siomycin-D, (II) (upper trace)    
ib CDCl3. 

       FT measurement conditions: spectral width, 3600 Hz; pulse width, 12 ps (90' ); acquisition time, 
   2.26 s; number of data points, 16 K; number of transients, 256; 5-mm spinning tube; concentration, 
   40 mg,/nil; 23' C.

Siomycin-D1

Siomycin-A

Fig. 3. 25-MHz 114 complete-decoupled 13C NMR spectra of siomycin-A (I) (lower trace) and siomycin-D1
   (11) (upper trace) in CDC13-CD3OH (4:1). 

       FT measurement conditions: spectral width, 5500 Hz; pulse width, 18 us (43'); acquisition time, 
   0.7 s: number of data points, 8 K; number of transients, 200 K; 5-mm spinning tube; concentration 

   120 mg/ml; 70°C.
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Table 1. Chemical shift data for siomycin-D1 (11)0.

   Assignment 

Ala-1 SCH3 
       aCH 

      NHCO 
Deala-1 p=CH (c) 

      P=CH(t) 
      NHCO 
Deala-2 p = CH (c) 

      ~=CH(t) 
      NHCO 
Val YCH3 

     ~CH 
       aCH 

Q 3=CH 
        5=CH 
        6=CH 

      7CH 
      8CH 
      11CH (A)

     0 11 

1.49d 
4.79dq 
6. 50bd 
5.2lbs 
5.71d (-0.05) 
8.61bs 
5.13bs (-0.05) 
6.39bs 
9.22bs 
0. 89d 
1.03d 
2.12m 
2.95d 
7.02s (-0.29) 
7.08d (+0.14) 
6.35dd 
3.60d 
4.59d 
4.43dd (-0.91)

   Assignment 

Q 11CH (B) 
    12CH3 

     80H 
Thr-2 Y-CH3 

     f3CH 
     aCH 
    NHCO 

Thstn 5CH3 
     TCH 
     YCH3 

     aCH 
    NHCO 

      Thz-4=CH 
Cys 5CH 

     i3'CH 
     aCH 

Debut YCH3 
      19=CH 

    NHCO

     ()11 

4.99dd (-0.35) 

6.85d 
I .67d 
6.42d 
5.84d 
8.20bd 
1.36d 
3.8lbs 
1.19s 
5.76d 
7.55bd 
8.29s 
3.12dd 
3.71dd 
4.97dd 
1.64-1 
6.20q 
8.52s

   Assignment 

Thr-I YCH;, 
       ,5CH 

        nCH 
       NHCO 
Thst A° P-3aCH 
         P-3eCH 
         P-4aCH 
         P-4eCH 
         P-6aCH 
      NHCO 

        Thz-1CH 
         Thz-2=CH 
         Thz-3 =CH 

Deala-S-l ti =CH (c) 
 i3-CH(t) 
      NHCO 

Dcala-S-2 '3-CH(c) 
        15 =CH (t)        NHCO

      111, 

0.97d 
1. 22m 
4.51dd 
6.86dd 
2.96dddd 
3.50dddd 
2.27ddd 
4.09ddd 
5.17bs 
9.84bs 
8.28s 
8.14s (+0.06) 
7.48s (+0.05) 
5.58bs 
6.81d 
9.97bs 
5.47bs 
6.70d 
9. OObs

   Assignment 

Ala 13CH3 
      aNCH 

     CO 
Deala-1 P=CH2 

       a=C 
      CO 

Deala-2 Q=CH2 
       a=C 
     CO 

Val YCH3 

     ,CH 
       aNCH 

      CO 
Q 12CH;, 

      INCH 
      I LOCH 

      8OCH 
        3=CH 
        5=CH 

        10=C 
        6=CH 

         2=C 
        4=C 
        9=C 
      COO

       ('C 

19.611 
52.7 

163.7 
103.0 
132.9 
162.5 
100.6 
134.90 
161.6 
 16.9 
19.2° 
31.8 
68.7 

173.7 
 _b 
60.4 
61.7 (-3.4 ) 
67.9 

125.1 (+1.8 ) 
124.8 
129.7 (+1.4 ) 
130.4 
144.21 
148.7 (-5.7 ) 
155.4E 
170.79g

   Assignment 

Thr-2 YCH3 
     aNCH 
    POCH Th
stn 6CH3 

     YCH3 
     aNCH 

     TOCH 
    (3OC 

     Thz-4 SCH= 
    NC= 
    CO 
     SC-N 

Cys SSCH 
     aNCH 

    CO 
Debut YCH3 
     a=C 

      ,3-CH      SC
=N 

Thr-1 YCH3 
     aNCH 

     1SOCH     CO

        nc 

 19.6,' 
56.2 
72.7 
16.6 

 19.2 
53.8 
69.0 
77.9 

126.0" 
150.8 
162.5 
167.4 
35.4 
79.7 

172.4 
 15.7 

129.4 
133.1 
170.99 
 19.4d 
56.6 
67.3 

166.2

   Assignment 

Thst A P-3 CH.. 
         P-4 CH2
         P-5 NC2

         P-6 CH 
         P-2 C = N 

        Thz-I SCH= 
      NC= 
      CO 
        SC=N 

        Thz-2 SCH= 
      NC = 
       CO 
        SC=N 

        Thz-3 SCH= 
       NC= 
        SC=N 

Deala-S-l ( -CH2 
        a=C 

      CO 
Deala-S-2 iS=CH2

        a=C 
       CO

     oC 

25.5 
30.3 
58.5 
65.0 

162.9 
125.4h 
157.8i 
162.5 
169.0 
128.1 
147.7'i
161.7'i
170.8 
119.4 
150.8' 
174.0 
104.0 
135.l e
160.2 
104.7 
134.0 
166.7

   8 Differences in chemical shifts from those of I were designated in parentheses ((i„ -n,) when they were over -+0 .05 ppm (n„) or _0.5 ppm (u,.). 
 See text. ° Abbreviations a and e are axial and equatorial, respectively. °-' Assignments nay be interchanged.
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270 MHz in CDCl3 - CD5OD (4: 1)1J, 1H single-

frequency off-resonance decoupling 13C spectra 
in CDCl3 - CD3OD (4: 1) at 70°C gave 13C signal 

assignments for all protonated carbon signals 
except those for some overlapping Me signals. 

Most of the nonprotonated carbon signals were 
assigned by chemical-shift comparisons between 

the derivatives. The deuterium isotope substi-
tution effects7) upon these 13C signals from 

CDCl3 - CD3OH (4: 1) to CDCl3 - CD3OD (4: 1) 
also provided useful information about the signal 

assignmentse°. The 13C spectrum of II in CDCl3-
CD3OH (4: 1) (Fig. 3) exhibited a signal at oe 
61.7 due to the Q-11 CH: instead of signals at 

S, 65.1 due to the Q-11 CH and 23.2 due to the 

Q-12 CH3 in I. 13C Signals due to Q-3 CH and 

I Q-10 -C- were shifted to lower fields and the 

signal of Q-4 C was shifted to a higher field 

I compared with those of I. These shift data are 
consistent with the effects of methyl substitution 
at Q-11 CH, of II. The 13C NMR data for I 

and II are listed in Table 1. On the basis of 
these observations, the structure II was assessed

for SIM-D1. The structures of other minor 

components are under investigation. 
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Fig. 4. Chemical structure of siomycin-A (1) and 

 siomycin-D1 (II): I, R=CH3; II, R -H. 

   Deala, dehydroalanine; Debut, dehydrobutyrine; 

 P, piperidine ring; Q, quinaldic acid precursor; 

 Thstn, thiostreptine residue; Thst A, thiostreptonic 

 acid unit; Thz, thiazole ring.
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